This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A270744 (r,1)-greedy sequence, where r(k) = 1/tau^k, where tau = golden ratio. 10
 1, 2, 2, 3, 4, 32, 1065, 2038968, 5977146319204, 36314862033946243071181679, 1028280647188781709727717632740627249617427013751977, 958046899855070460620234639622630375078362220775180051610386376308132568342498992099474472596860400289 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Let x > 0, and let r = (r(k)) be a sequence of positive irrational numbers.  Let a(1) be the least positive integer m such that r(1)/m < x, and inductively let a(n) be the least positive integer m such that r(1)/a(1) + ... + r(n-1)/a(n-1) + r(n)/m < x.  The sequence (a(n)) is the (r,x)-greedy sequence.  We are interested in choices of r and x for which the series r(1)/a(1) + ... + r(n)/a(n) + ... converges to x.  (The same algorithm is used to generate sequences listed at A269993.) Guide to related sequences: x     r(k) 1   1/tau^k             A270744 1   k/tau^k             A270745 1   2/e^k               A270746 1   4/Pi^k              A270747 1   2/log(k+1)          A270748 1   1/(k*log(k+1))      A270749 1   (1/k)*log(k+1)      A270750 1   2/(k*tau^k)         A270751 1   1/(k*e)             A270752 1   1/(k*sqrt(2))       A270916 LINKS FORMULA a(n) = ceiling(r(n)/s(n)), where s(n) = 1 - r(1)/a(1) - r(2)/a(2) - ... - r(n-1)/a(n-1). r(1)/a(1) + ... + r(n)/a(n) + ... = 1 EXAMPLE a(1) = ceiling(r(1)) = ceiling(1/tau) = ceiling(0.618...) = 1; a(2) = ceiling(r(2)/(1 - r(1)/1) = 2; a(3) = ceiling(r(3)/(1 - r(1)/1 - r(2)/2) = 2. The first 6 terms of the series r(1)/a(1) + ... + r(n)/a(n) + ...  are 0.618..., 0.809..., 0.927..., 0.975..., 0.998..., 0.999967... . MATHEMATICA \$MaxExtraPrecision = Infinity; z = 13; r[k_] := N[1/GoldenRatio^k, 1000]; f[x_, 0] = x; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = 1; Table[n[x, k], {k, 1, z}] N[Sum[r[k]/n[x, k], {k, 1, 13}], 200] CROSSREFS Cf.  A001620, A270745, A094214, A269993. Sequence in context: A205118 A022405 A309895 * A093927 A067088 A065519 Adjacent sequences:  A270741 A270742 A270743 * A270745 A270746 A270747 KEYWORD nonn,easy AUTHOR Clark Kimberling, Apr 07 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 22:27 EST 2019. Contains 329880 sequences. (Running on oeis4.)