OFFSET
0,3
COMMENTS
More generally, the ordinary generating function for the alternating sum of centered k-gonal pyramidal numbers is -x*(1 - (k - 2)*x + x^2)/((1 - x)*(1 + x)^4).
LINKS
Ilya Gutkovskiy, Table of n, a(n) for n = 0..500
OEIS Wiki, Centered pyramidal numbers
Index entries for linear recurrences with constant coefficients, signature (-3,-2,2,3,1).
FORMULA
G.f.: -x*(1 - 5*x + x^2)/((1 - x)*(1 + x)^4).
a(n) = -3*a(n-1) - 2*a(n-2) + 2*a(n-3) + 3*a(n-4) + a(n-5).
a(n) = ((-1)^n*(2*n + 1)*(14*n^2 + 14*n - 9) + 9)/48.
E.g.f.: (1/48)*(9*exp(x) - (9 + 66*x - 126*x^2 + 28*x^3)*exp(-x)). - G. C. Greubel, Mar 28 2016
MAPLE
A270694:= n-> ((-1)^n*(2*n+1)*(14*n^2+14*n-9) + 9)/48; seq(A270694(n), n=0..40); # G. C. Greubel, Apr 02 2021
MATHEMATICA
LinearRecurrence[{-3, -2, 2, 3, 1}, {0, -1, 8, -23, 51}, 39]
Table[((-1)^n (2 n + 1) (14 n^2 + 14 n - 9) + 9)/48, {n, 0, 38}]
PROG
(PARI) my(x='x+O('x^50)); concat(0, Vec(-x*(1-5*x+x^2)/((1-x)*(1+x)^4))) \\ Altug Alkan, Mar 21 2016
(Magma) [((-1)^n*(2*n + 1)*(14*n^2 + 14*n - 9) + 9)/48 : n in [0..40]]; // Wesley Ivan Hurt, Mar 21 2016
(Sage) [((-1)^n*(2*n+1)*(14*n^2+14*n-9) +9)/48 for n in (0..40)] # G. C. Greubel, Apr 02 2021
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Ilya Gutkovskiy, Mar 21 2016
STATUS
approved