login
A270650
Min(i, j), where p(i)*p(j) is the n-th term of A006881.
42
1, 1, 1, 2, 2, 1, 1, 2, 1, 3, 1, 2, 1, 2, 3, 2, 1, 1, 3, 2, 1, 4, 1, 3, 1, 2, 4, 2, 1, 3, 1, 2, 3, 1, 4, 1, 2, 2, 4, 1, 2, 1, 5, 3, 1, 3, 1, 2, 4, 1, 2, 1, 2, 3, 5, 1, 2, 1, 4, 3, 1, 5, 2, 1, 3, 4, 1, 2, 6, 1, 3, 2, 6, 2, 5, 1, 4, 1, 3, 2, 1, 1, 4, 2, 3, 1
OFFSET
1,4
LINKS
EXAMPLE
A006881 = (6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, ... ), the increasing sequence of all products of distinct primes. The first 4 factorizations are 2*3, 2*5, 2*7, 3*5, so that (a(1), a(2), a(3), a(4)) = (1,1,1,2).
MATHEMATICA
mx = 350; t = Sort@Flatten@Table[Prime[n]*Prime[m], {n, Log[2, mx/3]}, {m, n + 1, PrimePi[mx/Prime[n]]}]; (* A006881, Robert G. Wilson v, Feb 07 2012 *)
u = Table[FactorInteger[t[[k]]][[1]], {k, 1, Length[t]}];
u1 = Table[u[[k]][[1]], {k, 1, Length[t]}] (* A096916 *)
PrimePi[u1] (* A270650 *)
v = Table[FactorInteger[t[[k]]][[2]], {k, 1, Length[t]}];
v1 = Table[v[[k]][[1]], {k, 1, Length[t]}] (* A070647 *)
PrimePi[v1] (* A270652 *)
d = v1 - u1 (* A176881 *)
Map[PrimePi[FactorInteger[#][[1, 1]]] &, Select[Range@ 240, And[SquareFreeQ@ #, PrimeOmega@ # == 2] &]] (* Michael De Vlieger, Apr 25 2016 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 25 2016
STATUS
approved