login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A270650 Min(i, j), where p(i)*p(j) is the n-th term of A006881. 41
1, 1, 1, 2, 2, 1, 1, 2, 1, 3, 1, 2, 1, 2, 3, 2, 1, 1, 3, 2, 1, 4, 1, 3, 1, 2, 4, 2, 1, 3, 1, 2, 3, 1, 4, 1, 2, 2, 4, 1, 2, 1, 5, 3, 1, 3, 1, 2, 4, 1, 2, 1, 2, 3, 5, 1, 2, 1, 4, 3, 1, 5, 2, 1, 3, 4, 1, 2, 6, 1, 3, 2, 6, 2, 5, 1, 4, 1, 3, 2, 1, 1, 4, 2, 3, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..1000

EXAMPLE

A006881 = (6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, ... ), the increasing sequence of all products of distinct primes.  The first 4 factorizations are 2*3, 2*5, 2*7, 3*5, so that (a(1), a(2), a(3), a(4)) = (1,1,1,2).

MATHEMATICA

mx = 350; t = Sort@Flatten@Table[Prime[n]*Prime[m], {n, Log[2, mx/3]}, {m, n + 1, PrimePi[mx/Prime[n]]}]; (* A006881, Robert G. Wilson v, Feb 07 2012 *)

u = Table[FactorInteger[t[[k]]][[1]], {k, 1, Length[t]}];

u1 = Table[u[[k]][[1]], {k, 1, Length[t]}]  (* A096916 *)

PrimePi[u1]  (* A270650 *)

v = Table[FactorInteger[t[[k]]][[2]], {k, 1, Length[t]}];

v1 = Table[v[[k]][[1]], {k, 1, Length[t]}]  (* A070647 *)

PrimePi[v1]  (* A270652 *)

d = v1 - u1  (* A176881 *)

Map[PrimePi[FactorInteger[#][[1, 1]]] &, Select[Range@ 240, And[SquareFreeQ@ #, PrimeOmega@ # == 2] &]] (* Michael De Vlieger, Apr 25 2016 *)

CROSSREFS

Cf. A000040, A006881, A096916, A070647, A270652, A270003.

Sequence in context: A266499 A226621 A112933 * A088427 A255350 A104482

Adjacent sequences:  A270647 A270648 A270649 * A270651 A270652 A270653

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Apr 25 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 15 02:27 EDT 2021. Contains 342974 sequences. (Running on oeis4.)