login
A270596
Primes p congruent to 11 mod 12 (A068231), such that there exists a nonzero element c of GF(p), such that the element c, c-1 and -1 generate a proper subgroup of the multiplicative group.
1
131, 191, 239, 251, 311, 419, 431, 491, 599, 647, 659, 683, 743, 827, 911, 971, 1031, 1091, 1103, 1151, 1163, 1223, 1259, 1451, 1499, 1511, 1559, 1571, 1583, 1607, 1667, 1787, 1811, 1847, 1871, 1931, 2003, 2087, 2111, 2243, 2267, 2339, 2351, 2399, 2411, 2423, 2531, 2591, 2663, 2687, 2699, 2711, 2843, 2927, 2939, 3011
OFFSET
1,1
COMMENTS
P. Cameron shows that "primes congruent to 1 (mod 3) and greater than 7" (see A002476) and "primes congruent to 1 (mod 4) and greater than 5" (see A002144) also have this property.
LINKS
Peter Cameron's Blog, Permutation groups and regular semigroups, 2, Posted 22/08/2015.
PROG
(PARI)
{ forprime(p=11, 10^6,
if ( p%12 != 11, next() );
for (c=2, p-2,
my( v = vector(p-1) );
my( g0 = Mod(c, p), rc0 = znorder(g0) );
if ( rc0 == p - 1, next() );
if ( znorder( -g0 ) == p - 1, next() );
my( g1 = Mod(c-1, p), rc1 = znorder(g1) );
if ( rc1 == p - 1, next() );
if ( znorder( -g1 ) == p - 1, next() );
if ( znorder( g0*g1 ) == p - 1, next() );
if ( znorder( -g0*g1 ) == p - 1, next() );
for (x0 = 0, rc0,
my ( p0 = g0^x0, z = p0 );
for (x1 = 0, rc1,
v[lift(z)] = 1;
v[p - lift(z)] = 1;
z * = g1;
);
);
my( s = sum(k=1, #v, v[k]) );
if ( s < p - 1, print1(p, ", "); break() );
);
); } \\ Joerg Arndt, Mar 20 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Marcus, Mar 20 2016
EXTENSIONS
Terms > 500 by Joerg Arndt, Mar 20 2016
STATUS
approved