login
A270589
Denominators of r-Egyptian fraction expansion for log(2), where r(k) = 1/(k+1).
1
1, 2, 10, 136, 16792, 481484601, 5752738775151622145, 32677165184182243545746422896718822871, 3003270816051953126782801862429770277283389802341096352218029665206283079575
OFFSET
1,2
COMMENTS
Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ..., the r-Egyptian fraction for x.
See A269993 for a guide to related sequences.
EXAMPLE
log(2) = 1/(2*1) + 1/(3*2) + 1/(4*10) + 1/(5*136) + ...
MATHEMATICA
r[k_] := 1/(k+1); f[x_, 0] = x; z = 10;
n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
x = Log[2]; Table[n[x, k], {k, 1, z}]
CROSSREFS
Cf. A269993.
Sequence in context: A075199 A134981 A087417 * A171214 A213955 A091990
KEYWORD
nonn,frac,easy
AUTHOR
Clark Kimberling, Apr 04 2016
STATUS
approved