login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A270584 Denominators of r-Egyptian fraction expansion for golden ratio - 1, where r(k) = 1/(k+1). 1
1, 3, 37, 1204, 21029921, 425355555167420, 439183524292095499600664584581, 240317442633783387248198509182959563857071128274317237128901, 1816763565571992723556609635427913847146292698536599340539742991592182627925499061514094793847919952134648005118828414904 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1).  Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k).  Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ... , the r-Egyptian fraction for x.

See A269993 for a guide to related sequences.

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..11

Eric Weisstein's World of Mathematics, Egyptian Fraction

Index entries for sequences related to Egyptian fractions

EXAMPLE

tau - 1 = 1/(2*1) + 1/(3*3) + 1/(4*37) + 1/(5*1204) + ...

MATHEMATICA

r[k_] := 1/(k+1); f[x_, 0] = x; z = 10;

n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]

f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]

x = GoldenRatio - 1; Table[n[x, k], {k, 1, z}]

CROSSREFS

Cf. A269993.

Sequence in context: A113074 A128083 A270751 * A175771 A220628 A261594

Adjacent sequences:  A270581 A270582 A270583 * A270585 A270586 A270587

KEYWORD

nonn,frac,easy

AUTHOR

Clark Kimberling, Apr 03 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 03:37 EDT 2019. Contains 328040 sequences. (Running on oeis4.)