login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Denominators of r-Egyptian fraction expansion for (1/2)^(1/3), where r(k) = 1/(2k-1).
2

%I #10 Nov 17 2024 07:17:33

%S 2,2,2,6,35,1828,87102089,9369260399911997,

%T 79759690931475868535017424372273,

%U 6278545782421133501164266118042557416295332543123744442037840298

%N Denominators of r-Egyptian fraction expansion for (1/2)^(1/3), where r(k) = 1/(2k-1).

%C Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ..., the r-Egyptian fraction for x.

%C See A269993 for a guide to related sequences.

%H Clark Kimberling, <a href="/A270557/b270557.txt">Table of n, a(n) for n = 1..13</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EgyptianFraction.html">Egyptian Fraction</a>

%H <a href="/index/Ed#Egypt">Index entries for sequences related to Egyptian fractions</a>

%e (1/2)^(1/3) = 1/(1*2) + 1/(3*2) + 1/(5*2) + 1/(7*6) + ...

%t r[k_] := 1/(2k-1); f[x_, 0] = x; z = 10;

%t n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]

%t f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]

%t x = (1/2)^(1/3); Table[n[x, k], {k, 1, z}]

%Y Cf. A269993, A005408.

%K nonn,frac,easy

%O 1,1

%A _Clark Kimberling_, Apr 03 2016