%I
%S 2,2,8,97,14319,624706742,650582824487459710,
%T 603427782600234609340303332178054808,
%U 537935638469864198057050787293558181575074487162482534612409868942679959
%N Denominators of rEgyptian fraction expansion for log(2), where r(k) = 1/(2k1).
%C Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k1)), and f(k) = f(k1)  r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ... , the rEgyptian fraction for x.
%C See A269993 for a guide to related sequences.
%H Clark Kimberling, <a href="/A270555/b270555.txt">Table of n, a(n) for n = 1..12</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EgyptianFraction.html">Egyptian Fraction</a>
%H <a href="/index/Ed#Egypt">Index entries for sequences related to Egyptian fractions</a>
%e log(2) = 1/(1*2) + 1/(3*2) + 1/(5*8) + 1/(7*97) + ...
%t r[k_] := 1/(2k1); f[x_, 0] = x; z = 10;
%t n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k  1]]
%t f[x_, k_] := f[x, k] = f[x, k  1]  r[k]/n[x, k]
%t x = Log[2]; Table[n[x, k], {k, 1, z}]
%Y Cf. A269993, A005408.
%K nonn,frac,easy
%O 1,1
%A _Clark Kimberling_, Apr 03 2016
