login
A270528
Sum of divisors of the products of the smaller and larger parts of the partitions of n into two parts.
1
0, 1, 3, 11, 19, 34, 58, 91, 120, 167, 245, 296, 413, 471, 574, 731, 948, 961, 1335, 1395, 1645, 1872, 2398, 2344, 2994, 3109, 3603, 3865, 4865, 4388, 5960, 5851, 6608, 7006, 8189, 7811, 10203, 9806, 11000, 11147, 13930, 12216, 16093, 15118, 16459, 17459
OFFSET
1,3
FORMULA
a(n) = Sum_{i=1..floor(n/2)} sigma(i*(n-i)).
EXAMPLE
a(5) = 19; the partitions of 5 into two parts are (1,4) and (2,3). The sum of divisors of the products of the partitions is sigma(4) + sigma(6) = (1+2+4) + (1+2+3+6) = 7 + 12 = 19.
MAPLE
with(numtheory): A270528:=n->add(sigma(i*(n-i)), i=1..floor(n/2)): seq(A270528(n), n=1..100);
MATHEMATICA
Table[Sum[DivisorSigma[1, i*(n - i)], {i, Floor[n/2]}], {n, 80}]
PROG
(PARI) a(n) = sum(i=1, n\2, sigma(i*(n-i))); \\ Michel Marcus, Mar 18 2016
CROSSREFS
Sequence in context: A014223 A023265 A018557 * A213540 A085616 A138723
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Mar 18 2016
STATUS
approved