%I #8 Feb 24 2018 11:53:53
%S 1,3,29,5427,36287610,1365965619077845,
%T 23235868400278912260438706402888,
%U 522919219334412314763983041497942273235588152390441601515859340
%N Denominators of r-Egyptian fraction expansion for (golden ratio - 1), where r(k) = 1/Prime(k).
%C Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ... , the r-Egyptian fraction for x.
%C See A269993 for a guide to related sequences.
%H Clark Kimberling, <a href="/A270480/b270480.txt">Table of n, a(n) for n = 1..11</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EgyptianFraction.html">Egyptian Fraction</a>
%H <a href="/index/Ed#Egypt">Index entries for sequences related to Egyptian fractions</a>
%e tau - 1 = 1/(2*1) + 1/(3*3) + 1/(5*29) + 1/(7*5427) + ...
%t r[k_] := 1/Prime[k]; f[x_, 0] = x; z = 10;
%t n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
%t f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
%t x = GoldenRatio - 1; Table[n[x, k], {k, 1, z}]
%Y Cf. A269993, A000040.
%K nonn,frac,easy
%O 1,2
%A _Clark Kimberling_, Mar 30 2016