login
A270454
Number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 163", based on the 5-celled von Neumann neighborhood.
3
1, 5, 9, 33, 25, 85, 49, 161, 81, 261, 121, 385, 169, 533, 225, 705, 289, 901, 361, 1121, 441, 1365, 529, 1633, 625, 1925, 729, 2241, 841, 2581, 961, 2945, 1089, 3333, 1225, 3745, 1369, 4181, 1521, 4641, 1681, 5125, 1849, 5633, 2025, 6165, 2209, 6721, 2401
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, Mar 17 2016: (Start)
a(n) = (1+(-1)^n+4*n-2*(-2+(-1)^n)*n^2)/2.
a(n) = n^2+2*n+1 for n even.
a(n) = 3*n^2+2*n for n odd.
a(n) = 3*a(n-2)-3*a(n-4)+a(n-6) for n>5.
G.f.: (1+5*x+6*x^2+18*x^3+x^4+x^5) / ((1-x)^3*(1+x)^3).
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=163; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
CROSSREFS
Sequence in context: A271889 A272447 A034435 * A323150 A116390 A028351
KEYWORD
nonn,easy
AUTHOR
Robert Price, Mar 17 2016
STATUS
approved