login
A270416
Numbers n such that sigma(n) - 1 and sigma(phi(n)) are both primes.
1
3, 5, 6, 10, 17, 34, 40, 60, 85, 136, 204, 240, 4369, 8224, 8704, 8738, 10880, 12336, 13056, 65537, 131074, 131584, 139264, 163840, 164480, 174760, 208896, 245760, 262140, 524296, 526336, 559232, 835584, 838848, 2281736192, 2694881440, 2852170240, 2863267840, 3221274624, 3233857728, 4026593280
OFFSET
1,1
COMMENTS
Numbers n such that A039653(n) and A062402(n) are both primes.
Intersection of A248792 and A062514.
Prime terms are in A249759.
Corresponding values of sigma(n) - 1: 3, 5, 11, 17, 17, 53, 89, 167, ...
Corresponding values of sigma(phi(n)): 3, 7, 3, 7, 31, 31, 31, 31, 127, ...
EXAMPLE
10 is in the sequence because sigma(10) - 1 = 18 - 1 = 17 and sigma(phi(10)) = sigma(4) = 7 (both primes).
MATHEMATICA
Select[Range[10^6], And[PrimeQ[DivisorSigma[1, #] - 1], PrimeQ@ DivisorSigma[1, EulerPhi@ #]] &] (* Michael De Vlieger, Mar 17 2016 *)
PROG
(PARI) isok(n) = isprime(sigma(n)-1) && isprime(sigma(eulerphi(n))); \\ Michel Marcus, Mar 17 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Mar 16 2016
EXTENSIONS
a(35)-a(41) from Giovanni Resta, Apr 10 2016
STATUS
approved