login
A270381
Denominators of r-Egyptian fraction expansion for the Euler-Mascheroni constant (EulerGamma), where r = (1, 1/4, 1/9, 1/16, ...).
1
2, 4, 8, 76, 9076, 76367616, 8970505418837847, 105072872079226455591148215294656, 26036426776932682309708313847332475352524205664479930813102637500
OFFSET
1,1
COMMENTS
Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ... , the r-Egyptian fraction for x.
See A269993 for a guide to related sequences.
EXAMPLE
Euler-Mascheroni constant = 1/2 + 1/(4*4) + 1/(9*8) + 1/(16*76) + ...
MATHEMATICA
r[k_] := 1/k^2; f[x_, 0] = x; z = 10;
n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
x = EulerGamma; Table[n[x, k], {k, 1, z}]
PROG
(PARI) r(k) = 1/k^2;
f(k, x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x); );
a(k, x=Euler) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 21 2016
CROSSREFS
Cf. A269993.
Sequence in context: A261714 A204548 A018532 * A099280 A018560 A087375
KEYWORD
nonn,frac,easy
AUTHOR
Clark Kimberling, Mar 20 2016
STATUS
approved