

A270347


Denominators of rEgyptian fraction expansion for sqrt(1/2), where r = (1,1/2,1/4,1/8,...)


3



2, 3, 7, 27, 650, 689392, 1130869248534, 2046949388776880512222550, 5664769376602746621028306587399157369622446276283, 61600875764518391286867927949695082949269716944423018977948114995142883041085134431474743108010213
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k1)), and f(k) = f(k1)  r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ... , the rEgyptian fraction for x.
See A269993 for a guide to related sequences.


LINKS

Clark Kimberling, Table of n, a(n) for n = 1..12
Eric Weisstein's World of Mathematics, Egyptian Fraction
Index entries for sequences related to Egyptian fractions


EXAMPLE

sqrt(1/2) = 1/2 + 1/(2*3) + 1/(4*7) + ...


MATHEMATICA

r[k_] := 2/2^k; f[x_, 0] = x; z = 10;
n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k  1]]
f[x_, k_] := f[x, k] = f[x, k  1]  r[k]/n[x, k]
x = Sqrt[1/2]; Table[n[x, k], {k, 1, z}]


PROG

(PARI) r(k) = 2/2^k;
f(k, x) = if (k==0, x, f(k1, x)  r(k)/a(k, x); );
a(k, x=sqrt(1/2)) = ceil(r(k)/f(k1, x)); \\ Michel Marcus, Mar 18 2016


CROSSREFS

Cf. A269993.
Sequence in context: A156142 A052877 A137075 * A060412 A276665 A062573
Adjacent sequences: A270344 A270345 A270346 * A270348 A270349 A270350


KEYWORD

nonn,frac,easy


AUTHOR

Clark Kimberling, Mar 17 2016


STATUS

approved



