login
Denominators of r-Egyptian fraction expansion for the Euler-Mascheroni constant (Gamma-Euler constant), where r = (1,1/2,1/3,1/4,...)
2

%I #12 Feb 23 2018 22:04:04

%S 2,7,58,6256,37041488,3283456941510566,

%T 87990824525320083189557345568930,

%U 6787481189341615675664690311149906782682845820114751821172918190

%N Denominators of r-Egyptian fraction expansion for the Euler-Mascheroni constant (Gamma-Euler constant), where r = (1,1/2,1/3,1/4,...)

%C Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ... , the r-Egyptian fraction for x.

%C See A269993 for a guide to related sequences.

%H Clark Kimberling, <a href="/A270315/b270315.txt">Table of n, a(n) for n = 1..11</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EgyptianFraction.html">Egyptian Fraction</a>

%H <a href="/index/Ed#Egypt">Index entries for sequences related to Egyptian fractions</a>

%e log(2) = 1/2 + 1/(2*7) + 1/(3*58) + ...

%t r[k_] := 1/k; f[x_, 0] = x; z = 10;

%t n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]

%t f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]

%t x = GammaEuler; Table[n[x, k], {k, 1, z}]

%Y Cf. A269993.

%K nonn,frac,easy

%O 1,1

%A _Clark Kimberling_, Mar 15 2016