%I #18 Sep 03 2022 22:10:54
%S 2,3,13,298,355823,306479173303,85372761970827958806466,
%T 16575976283809775714654644103484953548013865676,
%U 269025959411335919672976939610798847100114463059537709191005089031919232139117472577538965440
%N Denominators of r-Egyptian fraction expansion for log(2), where r = (1,1/2,1/3,1/4,...).
%C Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ... , the r-Egyptian fraction for x.
%C See A269993 for a guide to related sequences.
%H Clark Kimberling, <a href="/A270314/b270314.txt">Table of n, a(n) for n = 1..12</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EgyptianFraction.html">Egyptian Fraction</a>
%H <a href="/index/Ed#Egypt">Index entries for sequences related to Egyptian fractions</a>
%e log(2) = 1/2 + 1/(2*3) + 1/(3*13) + ...
%t r[k_] := 1/k; f[x_, 0] = x; z = 10;
%t n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
%t f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
%t x = Log[2]; Table[n[x, k], {k, 1, z}]
%Y Cf. A269993.
%K nonn,frac,easy
%O 1,1
%A _Clark Kimberling_, Mar 15 2016