This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A270309 Irregular triangle read by rows: T(n,k) = ((n-k)+1)^2 if odd-n and odd-k; T(n,k) = k^2 if odd-n and even-k; T(n,k) = (n/2-(k/2-1/2))^2 if even-n and odd-k; T(n,k) = (k/2+1)^2 if even-n and even-k; where n >= 1, k = 1..2*n. 1
 1, 1, 1, 1, 1, 1, 9, 4, 1, 1, 4, 9, 4, 1, 1, 4, 4, 1, 1, 4, 25, 4, 9, 16, 1, 1, 16, 9, 4, 25, 9, 1, 4, 4, 1, 9, 9, 1, 4, 4, 1, 9, 49, 4, 25, 16, 9, 36, 1, 1, 36, 9, 16, 25, 4, 49, 16, 1, 9, 4, 4, 9, 1, 16, 16, 1, 9, 4, 4, 9, 1, 16, 81, 4, 49, 16, 25, 36, 9, 64, 1, 1, 64, 9, 36, 25, 16, 49, 4, 81, 25, 1, 16, 4, 9, 9, 4, 16, 1, 25, 25, 1, 16, 4, 9, 9, 4, 16, 1, 25 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,7 COMMENTS Refer to A269845, but change to n+2 X n instead of n+1 X n. There are triangles appearing along main diagonal. If the area of the smallest triangles are defined as 1, then the areas of all other triangles seem to be square numbers. Conjectures: (i) Even terms of row sum is A002492. (ii) Odd terms of row sum/2 is A100157. See illustration in links. LINKS Kival Ngaokrajang, Illustration of initial terms, Row sum EXAMPLE Irregular triangle begins: n\k  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  ... 1    1,  1 2    1,  1,  1,  1 3    9,  4,  1,  1,  4,  9 4    4,  1,  1,  4,  4,  1,  1,  4 5   25,  4,  9, 16,  1,  1, 16,  9,  4, 25 6    9,  1,  4,  4,  1,  9,  9,  1,  4,  4,  1,  9 7   49,  4, 25, 16,  9, 36,  1,  1, 36,  9, 16, 25,  4, 49 8   16,  1,  9,  4,  4,  9,  1, 16, 16,  1,  9,  4,  4,  9,  1, 16 ... PROG (Small Basic) For n=1 To 20   c=1   For k=1 To 2*n    If k<=n then     If Math.Remainder(n, 2)=0 Then       If Math.remainder(k, 2)=0 Then         t[n][k]=k/2       Else         t[n][k]=math.Floor(n/2-(k/2-1/2))       EndIf     Else       If Math.remainder(k, 2)=0 Then         t[n][k]=k       Else         t[n][k]=(n-k)+1       EndIf     EndIf     TextWindow.Write(t[n][k]*t[n][k]+ ", ")    Else     t[n][k]=t[n][k-c]     TextWindow.write(t[n][k]*t[n][k]+ ", ")     c=c+2    EndIf   EndFor EndFor CROSSREFS Cf. A002492, A100157, A269845. Sequence in context: A112146 A056897 A263192 * A010158 A286229 A242611 Adjacent sequences:  A270306 A270307 A270308 * A270310 A270311 A270312 KEYWORD nonn,tabf AUTHOR Kival Ngaokrajang, Mar 15 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 11:44 EDT 2019. Contains 328056 sequences. (Running on oeis4.)