login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A270309 Irregular triangle read by rows: T(n,k) = ((n-k)+1)^2 if odd-n and odd-k; T(n,k) = k^2 if odd-n and even-k; T(n,k) = (n/2-(k/2-1/2))^2 if even-n and odd-k; T(n,k) = (k/2+1)^2 if even-n and even-k; where n >= 1, k = 1..2*n. 1
1, 1, 1, 1, 1, 1, 9, 4, 1, 1, 4, 9, 4, 1, 1, 4, 4, 1, 1, 4, 25, 4, 9, 16, 1, 1, 16, 9, 4, 25, 9, 1, 4, 4, 1, 9, 9, 1, 4, 4, 1, 9, 49, 4, 25, 16, 9, 36, 1, 1, 36, 9, 16, 25, 4, 49, 16, 1, 9, 4, 4, 9, 1, 16, 16, 1, 9, 4, 4, 9, 1, 16, 81, 4, 49, 16, 25, 36, 9, 64, 1, 1, 64, 9, 36, 25, 16, 49, 4, 81, 25, 1, 16, 4, 9, 9, 4, 16, 1, 25, 25, 1, 16, 4, 9, 9, 4, 16, 1, 25 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,7

COMMENTS

Refer to A269845, but change to n+2 X n instead of n+1 X n.

There are triangles appearing along main diagonal. If the area of the smallest triangles are defined as 1, then the areas of all other triangles seem to be square numbers. Conjectures: (i) Even terms of row sum is A002492. (ii) Odd terms of row sum/2 is A100157. See illustration in links.

LINKS

Table of n, a(n) for n=1..110.

Kival Ngaokrajang, Illustration of initial terms, Row sum

EXAMPLE

Irregular triangle begins:

n\k  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  ...

1    1,  1

2    1,  1,  1,  1

3    9,  4,  1,  1,  4,  9

4    4,  1,  1,  4,  4,  1,  1,  4

5   25,  4,  9, 16,  1,  1, 16,  9,  4, 25

6    9,  1,  4,  4,  1,  9,  9,  1,  4,  4,  1,  9

7   49,  4, 25, 16,  9, 36,  1,  1, 36,  9, 16, 25,  4, 49

8   16,  1,  9,  4,  4,  9,  1, 16, 16,  1,  9,  4,  4,  9,  1, 16

...

PROG

(Small Basic)

For n=1 To 20

  c=1

  For k=1 To 2*n

   If k<=n then

    If Math.Remainder(n, 2)=0 Then

      If Math.remainder(k, 2)=0 Then

        t[n][k]=k/2

      Else

        t[n][k]=math.Floor(n/2-(k/2-1/2))

      EndIf

    Else

      If Math.remainder(k, 2)=0 Then

        t[n][k]=k

      Else

        t[n][k]=(n-k)+1

      EndIf

    EndIf

    TextWindow.Write(t[n][k]*t[n][k]+ ", ")

   Else

    t[n][k]=t[n][k-c]

    TextWindow.write(t[n][k]*t[n][k]+ ", ")

    c=c+2

   EndIf

  EndFor

EndFor

CROSSREFS

Cf. A002492, A100157, A269845.

Sequence in context: A112146 A056897 A263192 * A010158 A286229 A242611

Adjacent sequences:  A270306 A270307 A270308 * A270310 A270311 A270312

KEYWORD

nonn,tabf

AUTHOR

Kival Ngaokrajang, Mar 15 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 11:44 EDT 2019. Contains 328056 sequences. (Running on oeis4.)