login
A270273
Array read by antidiagonals: T(n,m) = number of Hamiltonian cycles in C_n X C_m.
7
0, 0, 0, 1, 1, 1, 1, 3, 3, 1, 1, 6, 48, 6, 1, 1, 5, 126, 126, 5, 1, 1, 8, 390, 1344, 390, 8, 1, 1, 7, 1014, 2930, 2930, 1014, 7, 1, 1, 10, 2982, 28060, 23580, 28060, 2982, 10, 1, 1, 9, 8094, 55230, 145210, 145210, 55230, 8094, 9, 1
OFFSET
1,8
LINKS
Artem M. Karavaev, Hamilton Cycles
Eric Weisstein's World of Mathematics, Hamiltonian Cycle
Eric Weisstein's World of Mathematics, Torus Grid Graph
FORMULA
T(n,2) = A124349(n) / 2.
EXAMPLE
The start of the sequence as table:
0 0 1 1 1 1 1 ...
0 1 3 6 5 8 7 ...
1 3 48 126 390 1014 2982 ...
1 6 126 1344 2930 28060 55230 ...
1 5 390 2930 23580 145210 1045940 ...
1 8 1014 28060 145210 3273360 16111928 ...
1 7 2982 55230 1045940 16111928 257165468 ...
...
CROSSREFS
Row n=3-5 give: A194952, A216588, A358853.
Main diagonal gives A222199.
Sequence in context: A084546 A288266 A174116 * A026515 A075772 A142157
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Mar 14 2016
STATUS
approved