This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A270226 a(n) is the number of terms in the n-th block of consecutive integers of A136119. 0
 1, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Conjecture: Partial average of the sequence converges to 1+sqrt(2). Proof of the conjecture: since A136119(n+1) - A136119(n) = A001030(n), the sequence (a(n+1)) is the fixed point of the substitution sigma: 2->32, 3->322. Here one uses that since sigma(a)=a, the length of the n-th block is coded by the n-th letter.  Since the frequencies of 2 and 3 in this fixed point are respectively sqrt(2)/(1+sqrt(2)) and 1/(1+sqrt(2)), the conjecture follows. (Alternatively: (a(n+1)-2)  is  a Sturmian sequence with density sqrt(2)-1). - Michel Dekking, Jan 22 2017 LINKS FORMULA a(1)=1, a(n+1) = floor(n*sqrt(2)+1/sqrt(2)) - floor((n-1)*sqrt(2)+1/sqrt(2)) + 1. - Michel Dekking, Jan 22 2017 EXAMPLE From A136119 consecutive blocks are 1          a(1)=1, 3, 4, 5    a(2)=3, 7, 8       a(3)=2, 10, 11     a(4)=2, 13, 14, 15 a(5)=3. PROG (C) #include #include int main(){ int i, a, b; int j=0; for(i=2; i<200; i++){         a=ceil((i-0.5)*sqrt(2));         b=ceil((i-1.5)*sqrt(2));         if(a-b==1)j++;         else{j++; printf("%d, ", j); j=0; } } return 0; } CROSSREFS Cf. A136119. Sequence in context: A127807 A122028 A245070 * A305534 A248138 A049234 Adjacent sequences:  A270223 A270224 A270225 * A270227 A270228 A270229 KEYWORD nonn AUTHOR Benedict W. J. Irwin, Mar 13 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 12:08 EDT 2019. Contains 327253 sequences. (Running on oeis4.)