login
A270087
Number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 73", based on the 5-celled von Neumann neighborhood.
4
1, 4, 5, 40, 0, 121, 0, 225, 0, 361, 0, 529, 0, 729, 0, 961, 0, 1225, 0, 1521, 0, 1849, 0, 2209, 0, 2601, 0, 3025, 0, 3481, 0, 3969, 0, 4489, 0, 5041, 0, 5625, 0, 6241, 0, 6889, 0, 7569, 0, 8281, 0, 9025, 0, 9801, 0, 10609, 0, 11449, 0, 12321, 0, 13225, 0
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, Mar 11 2016: (Start)
a(n) = -1/2*(-1+(-1)^n)*(1+2*n)^2 for n>3.
a(n) = 0 for n>3 and even.
a(n) = 4*n^2+4*n+1 for n>3 and odd.
a(n) = 3*a(n-2)-3*a(n-4)+a(n-6) for n>9.
G.f.: (1+4*x+2*x^2+28*x^3-12*x^4+13*x^5+14*x^6-22*x^7-5*x^8+9*x^9) / ((1-x)^3*(1+x)^3).
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=73; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
CROSSREFS
Sequence in context: A336024 A228798 A041557 * A265689 A270098 A271285
KEYWORD
nonn,easy
AUTHOR
Robert Price, Mar 10 2016
STATUS
approved