login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A270085 Partial sums of the number of active (ON,black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 65", based on the 5-celled von Neumann neighborhood. 1
1, 5, 10, 46, 55, 151, 168, 356, 377, 689, 714, 1182, 1211, 1867, 1900, 2776, 2813, 3941, 3982, 5394, 5439, 7167, 7216, 9292, 9345, 11801, 11858, 14726, 14787, 18099, 18164, 21952, 22021, 26317, 26390, 31226, 31303, 36711, 36792, 42804, 42889, 49537, 49626 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Initialized with a single black (ON) cell at stage zero.

REFERENCES

S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

LINKS

Robert Price, Table of n, a(n) for n = 0..128

N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015

Eric Weisstein's World of Mathematics, Elementary Cellular Automaton

S. Wolfram, A New Kind of Science

Index entries for sequences related to cellular automata

Index to 2D 5-Neighbor Cellular Automata

Index to Elementary Cellular Automata

FORMULA

Conjectures from Colin Barker, Mar 11 2016: (Start)

a(n) = 1/4*(-45+(-1)^n)+(35*n)/6-(-1+(-1)^n)*n^2+(2*n^3)/3 for n>3.

a(n) = (4*n^3+35*n-66)/6 for n>3 and even.

a(n) = (4*n^3+12*n^2+35*n-69)/6 for n>3 and odd.

a(n) = a(n-1)+3*a(n-2)-3*a(n-3)-3*a(n-4)+3*a(n-5)+a(n-6)-a(n-7) for n>8.

G.f.: (1+4*x+2*x^2+24*x^3-3*x^4+4*x^6+4*x^7-8*x^8+4*x^10) / ((1-x)^4*(1+x)^3).

(End)

MATHEMATICA

CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];

code=65; stages=128;

rule=IntegerDigits[code, 2, 10];

g=2*stages+1; (* Maximum size of grid *)

a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)

ca=a;

ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];

PrependTo[ca, a];

(* Trim full grid to reflect growth by one cell at each stage *)

k=(Length[ca[[1]]]+1)/2;

ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];

on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)

Table[Total[Part[on, Range[1, i]]], {i, 1, Length[on]}] (* Sum at each stage *)

CROSSREFS

Cf. A269782.

Sequence in context: A122173 A083515 A103971 * A035406 A103932 A034190

Adjacent sequences:  A270082 A270083 A270084 * A270086 A270087 A270088

KEYWORD

nonn,easy

AUTHOR

Robert Price, Mar 10 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 2 12:26 EST 2021. Contains 341750 sequences. (Running on oeis4.)