OFFSET
1,1
COMMENTS
See A269982 for a definition of factorial fractility and a guide to related sequences.
LINKS
Robert Price, Table of n, a(n) for n = 1..91
EXAMPLE
NI(1/10) = (3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, ...),
NI(2/10) = (2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, ...) ~ NI(1/10),
NI(3/10) = (2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...),
NI(4/10) = (2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...) ~ NI(3/10),
NI(5/10) = (2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...),
NI(6/10) = (1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, ...) ~ NI(1/10),
NI(7/10) = (1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...) ~ NI(3/10),
NI(8/10) = (1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, ...) ~ NI(1/10),
NI(9/10) = (1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, ...) ~ NI(1/10),
so that there are 3 equivalence classes for n = 10, so the factorial fractility of 10 is 3.
MATHEMATICA
A269982[n_] := CountDistinct[With[{l = NestWhileList[
Rescale[#, {1/(Floor[x] + 1)!, 1/Floor[x]!} /.
FindRoot[1/x! == #, {x, 1}]] &, #, UnsameQ, All]},
Min@l[[First@First@Position[l, Last@l] ;; ]]] & /@
Range[1/n, 1 - 1/n, 1/n]]; (* Davin Park, Nov 19 2016 *)
Select[Range[2, 500], A269982[#] == 3 &] (* Robert Price, Sep 19 2019 *)
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling and Peter J. C. Moses, Mar 11 2016
EXTENSIONS
Edited by M. F. Hasler, Nov 05 2018
STATUS
approved