This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A269966 Integers n such that the n-th golden rectangle number is the sum of 2 nonzero squares. 0
 2, 5, 6, 11, 12, 13, 14, 25, 26, 37, 38, 61, 62, 73, 74, 85, 86, 97, 98, 121, 122, 133, 134, 145, 146, 157, 158, 181, 182, 221, 222, 253, 254, 325, 326, 337, 338, 365, 366, 397, 398, 445, 446, 613, 614, 625, 626, 697, 698, 721, 722, 793, 794, 865, 866 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Corresponding golden rectangle numbers are 2, 40, 104, 12816, 33552, 87841, 229970, 9107509825, 23843770274, 944284833567073, 2472169789339634, ... Initial terms of first differences are 3, 1, 5, 1, 1, 1, 11, 1, 11, 1, 23, 1, 11, 1, 11, 1, 11, 1, 23, ... LINKS EXAMPLE 5 is a term because 1^2 + 1^2 + 2^2 + 3^2 + 5^2 = 5*8 = 40 = 2^2 + 6^2. 6 is a term because 1^2 + 1^2 + 2^2 + 3^2 + 5^2 + 8^2 = 8*13 = 104 = 2^2 + 10^2. MATHEMATICA Rest@ Select[Range@ 200, SquaresR[2, #] > 0 &[Fibonacci[#] Fibonacci[# + 1]] &] (* Michael De Vlieger, Mar 09 2016 *) PROG (PARI) isA000404(n)= for( i=1, #n=factor(n)~%4, n[1, i]==3 && n[2, i]%2 && return); n && ( vecmin(n[1, ])==1 || (n[1, 1]==2 && n[2, 1]%2)) a001654(n) = fibonacci(n)*fibonacci(n+1); for(n=1, 1e2, if(isA000404(a001654(n)), print1(n, ", "))); (PARI) has(f)=for(i=1, #f~, if(f[i, 1]%4==3 && f[i, 2]%2, return(0))); 1 isA009003(f)=for(i=1, #f~, if(f[i, 1]%4==1, return(1))); 0 is(n)=my(f, g); has(f=factor(fibonacci(n))) && has(g=factor(fibonacci(n+1))) && (n%3!=1 || isA009003(f) || isA009003(g)) \\ Charles R Greathouse IV, Mar 08 2016 CROSSREFS Cf. A000404, A001654, A009003. Sequence in context: A248616 A265716 A206332 * A026344 A284488 A057812 Adjacent sequences:  A269963 A269964 A269965 * A269967 A269968 A269969 KEYWORD nonn AUTHOR Altug Alkan, Mar 08 2016 EXTENSIONS a(36)-a(55) from Charles R Greathouse IV, Mar 08 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 19 02:39 EST 2018. Contains 317332 sequences. (Running on oeis4.)