

A269844


Primes equal to the sum of a pair of consecutive integers which are both squarefree.


1



5, 11, 13, 29, 43, 59, 61, 67, 83, 131, 139, 157, 173, 211, 227, 229, 277, 283, 317, 331, 347, 373, 389, 419, 421, 443, 461, 509, 547, 563, 571, 619, 643, 653, 659, 661, 691, 709, 733, 787, 797, 821, 853, 859, 877, 907, 941, 947, 997, 1019, 1021, 1069, 1091, 1093, 1109, 1123, 1163, 1181, 1213
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The associated prime factors will always include 2 and 3.
Will every prime number be encountered as a prime factor from the sequence entries?
The sequence appears to share many of it terms with A001122.
What is the asymptotic behavior?
Conjecture: sequence has density A271780/2 = A005597*4/Pi^2 = 0.2675535... in the primes.  Charles R Greathouse IV, Jan 24 2018


LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Bill McEachen, A269844_vs_A001122


EXAMPLE

277 = 138 + 139 = 2*3*23 + 139 is in the sequence since both terms are squarefree.
281 = 140 + 141 = 2^2*5*7 + 3*47 is not in the sequence since the former term is divisible by 2^2.


MATHEMATICA

Select[Prime@ Range[3, 200], PrimeOmega@ # == PrimeNu@ # &[# (# + 1)] &@ Floor[#/2] &] (* Michael De Vlieger, Mar 07 2016 *)


PROG

(PARI)
genit(maxx)={for(i5=3, maxx, n=prime(i5); a=factor(floor(n/2.)); b=factor(ceil(n/2.)); clear=1; for(j5=1, omega(floor(n/2.)), if(a[j5, 2]<>1, clear=0));
for(j7=1, omega(ceil(n/2.)), if(b[j7, 2]<>1, clear=0)); if(clear>0, print1(n, ", "))); }
(PARI) is(n)=isprime(n) && issquarefree(n\2) && issquarefree(n\2+1) \\ Charles R Greathouse IV, Jan 24 2018
(PARI) list(lim)=my(v=List(), t=1); forfactored(k=3, (lim+1)\2, if(vecmax(k[2][, 2])>1, t=0, ; if(t && isprime(t=2*k[1]1), listput(v, t)); t=1)); Vec(v) \\ Charles R Greathouse IV, Jan 24 2018


CROSSREFS

Cf. A001122, primes with primitive root 2
Sequence in context: A225754 A098973 A125742 * A116440 A098720 A115091
Adjacent sequences: A269841 A269842 A269843 * A269845 A269846 A269847


KEYWORD

nonn,easy


AUTHOR

Bill McEachen, Mar 06 2016


STATUS

approved



