%I #4 Mar 05 2016 19:23:39
%S 40,3096,103296,3200604,90748696,2472983556,65284613232,1686961414812,
%T 42866673833128,1075244105809044,26689182058679264,656784781178376396,
%U 16046367933842361752,389645465813128015044,9411830636459978769552
%N Number of nX3 0..4 arrays with some element plus some horizontally, diagonally, antidiagonally or vertically adjacent neighbor totalling four exactly once.
%C Column 3 of A269829.
%H R. H. Hardin, <a href="/A269824/b269824.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 34*a(n-1) +37*a(n-2) -7276*a(n-3) +2525*a(n-4) +294806*a(n-5) -785545*a(n-6) -1242552*a(n-7) +4983512*a(n-8) +814900*a(n-9) -9636844*a(n-10) +1645224*a(n-11) +5010412*a(n-12) -1220112*a(n-13) -975664*a(n-14) +242688*a(n-15) +70464*a(n-16) -11520*a(n-17) -2304*a(n-18) for n>19
%e Some solutions for n=3
%e ..0..1..4. .4..4..1. .2..4..1. .1..4..2. .0..2..1. .1..2..3. .4..1..2
%e ..0..3..2. .2..3..4. .4..4..4. .3..4..1. .1..4..1. .2..4..4. .2..1..0
%e ..2..3..3. .0..3..3. .2..3..1. .3..2..1. .4..4..2. .3..4..4. .1..1..4
%Y Cf. A269829.
%K nonn
%O 1,1
%A _R. H. Hardin_, Mar 05 2016