The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A269794 G.f.: Product_{n>=1} 1/(1 - x^n/n^6)  =  Sum_{n>=0} a(n)*x^n/n!^6. 6
 1, 1, 65, 47449, 194444416, 3038449102976, 141766192358448256, 16678817447073033946240, 4372271021740050216976646144, 2323608852183697867526563204694016, 2323611343146528421975097303187359268864, 4116421685969107286571222251382158945547976704 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..100 FORMULA a(n) ~ c * n!^6, where c = Product_{k>=2} 1/(1-1/k^6) = 6*Pi^2 / cosh(sqrt(3)*Pi/2)^2 = 1.0176208398261870492814795459985... . - Vaclav Kotesovec, Mar 05 2016 MATHEMATICA Table[n!^6 * SeriesCoefficient[Product[1/(1-x^k/k^6), {k, 1, n}], {x, 0, n}], {n, 0, 20}] PROG (PARI) {a(n)=n!^6*polcoeff(prod(k=1, n, 1/(1-x^k/k^6 +x*O(x^n))), n)} for(n=0, 20, print1(a(n), ", ")) CROSSREFS Cf. A007841, A249588, A249593, A269791, A269793. Sequence in context: A183238 A103345 A291456 * A242283 A061688 A218689 Adjacent sequences:  A269791 A269792 A269793 * A269795 A269796 A269797 KEYWORD nonn AUTHOR Vaclav Kotesovec, Mar 05 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 05:23 EST 2020. Contains 332086 sequences. (Running on oeis4.)