This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A269793 G.f.: Product_{n>=1} 1/(1 - x^n/n^5) = Sum_{n>=0} a(n)*x^n/n!^5. 6
 1, 1, 33, 8051, 8259776, 25822962624, 200839327164224, 3375758721819353792, 110621043661751405543424, 6532189550762931700406452224, 653226327065916563182761815212032, 105203470361723800472334968046839365632, 26178104032796403698593899646317901702496256 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..120 FORMULA a(n) ~ c * n!^5, where c = Product_{k>=2} 1/(1-1/k^5) = abs(Gamma((9+sqrt(5) + i*sqrt(10-2*sqrt(5)))/4) * Gamma((9-sqrt(5) + i*sqrt(10+2*sqrt(5)))/4))^2 = 1.03814501733099931382497266723652151296563..., where Gamma is the Gamma function and i is the imaginary unit. - Vaclav Kotesovec, Mar 05 2016 MATHEMATICA Table[n!^5 * SeriesCoefficient[Product[1/(1-x^k/k^5), {k, 1, n}], {x, 0, n}], {n, 0, 20}] PROG (PARI) {a(n)=n!^5*polcoeff(prod(k=1, n, 1/(1-x^k/k^5 +x*O(x^n))), n)} for(n=0, 20, print1(a(n), ", ")) CROSSREFS Cf. A007841, A249588, A249593, A269791, A269794. Sequence in context: A183237 A099828 A099827 * A060705 A061687 A116056 Adjacent sequences:  A269790 A269791 A269792 * A269794 A269795 A269796 KEYWORD nonn AUTHOR Vaclav Kotesovec, Mar 05 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 18:37 EST 2019. Contains 329865 sequences. (Running on oeis4.)