login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A269782 Number of active (ON,black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 65", based on the 5-celled von Neumann neighborhood. 5
1, 4, 5, 36, 9, 96, 17, 188, 21, 312, 25, 468, 29, 656, 33, 876, 37, 1128, 41, 1412, 45, 1728, 49, 2076, 53, 2456, 57, 2868, 61, 3312, 65, 3788, 69, 4296, 73, 4836, 77, 5408, 81, 6012, 85, 6648, 89, 7316, 93, 8016, 97, 8748, 101, 9512, 105, 10308, 109, 11136 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Initialized with a single black (ON) cell at stage zero.

Similar to A270569.

REFERENCES

S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

LINKS

Robert Price, Table of n, a(n) for n = 0..128

Robert Price, Diagrams of the first 20 stages.

N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015

Eric Weisstein's World of Mathematics, Elementary Cellular Automaton

S. Wolfram, A New Kind of Science

Index entries for sequences related to cellular automata

Index to 2D 5-Neighbor Cellular Automata

Index to Elementary Cellular Automata

FORMULA

Conjectures from Colin Barker, Apr 03 2016: (Start)

a(n) = (11-(-1)^n+4*(-1)^n*n-4*(-1+(-1)^n)*n^2)/2 for n>4.

a(n) = 2*n+5 for n>4 and even.

a(n) = 4*n^2-2*n+6 for n>4 and odd.

a(n) = 3*a(n-2)-3*a(n-4)+a(n-6) for n>8.

G.f.: (1+4*x+2*x^2+24*x^3-3*x^4+4*x^6+4*x^7-8*x^8+4*x^10) / ((1-x)^3*(1+x)^3).

(End)

MATHEMATICA

CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];

code=65; stages=128;

rule=IntegerDigits[code, 2, 10];

g=2*stages+1; (* Maximum size of grid *)

a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)

ca=a;

ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];

PrependTo[ca, a];

(* Trim full grid to reflect growth by one cell at each stage *)

k=(Length[ca[[1]]]+1)/2;

ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];

Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)

CROSSREFS

Cf. A270569.

Sequence in context: A243772 A332316 A243275 * A131139 A152291 A336024

Adjacent sequences:  A269779 A269780 A269781 * A269783 A269784 A269785

KEYWORD

nonn,easy

AUTHOR

Robert Price, Mar 10 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 12:36 EDT 2021. Contains 343135 sequences. (Running on oeis4.)