%I #24 Sep 08 2022 08:46:16
%S 471,536,684,860,1192,1476,1944,2264,2876,4068,4540,6012,7064,7664,
%T 8852,10908,13136,14012,16520,18292,19296,22244,24296,27648,32472,
%U 34964,36284,38912,40356,43128,53780,56992,62064,63824,72828,74740,80532,86504,90572,96948,103496,105812,117292,119736
%N a(n) = 3*p^2+39*p+344+24*gcd(p-1,3)+11*gcd(p-1,4)+2*gcd(p-1,5), where p = prime(n).
%H Vincenzo Librandi, <a href="/A269749/b269749.txt">Table of n, a(n) for n = 1..1000</a>
%H Andrew Misseldine, <a href="http://arxiv.org/abs/1508.03757">Counting Schur Rings over Cyclic Groups</a>, arXiv preprint arXiv:1508.03757 [math.RA], 2015.
%F a(n) = A232106(n), n>2. - _R. J. Mathar_, May 23 2016
%p f2:=proc(n) local p; p:=ithprime(n);
%p 3*p^2+39*p+344+24*gcd(p-1,3)+11*gcd(p-1,4)+2*gcd(p-1,5);
%p end;
%p [seq(f2(n),n=1..60)];
%t Table[3 Prime[n]^2 + 39 Prime[n] + 344 + 24 GCD[Prime[n] - 1, 3]+ 11 GCD[Prime[n] - 1, 4] + 2 GCD[Prime[n] - 1, 5], {n, 45}] (* _Vincenzo Librandi_, Mar 26 2016 *)
%o (Magma) [3*p^2 + 39*p + 344 + 24*Gcd(p-1, 3) + 11*Gcd(p-1, 4) + 2*Gcd(p-1, 5): p in PrimesUpTo(200)]; // _Vincenzo Librandi_, Mar 26 2016
%K nonn
%O 1,1
%A _N. J. A. Sloane_, Mar 22 2016