login
A269728
Let k be a number not a power of 2 (see A057716), and define r by 2^(r-1) < k < 2^r; a(n) is smallest prime of the form 2^r*m+1 such that the exponential sum S(sigma_{m,k}) avoids p.
0
5, 17, 41, 73, 97, 17, 17, 17, 17, 17, 17, 1601, 97, 97, 449, 257, 97, 97, 97, 97, 193, 257, 97, 97, 97, 449, 193, 1409, 193, 193, 193, 257, 193, 449, 769, 257, 193, 449, 257, 193, 193, 193, 193, 257, 449, 193, 193, 193, 257, 449, 257, 257, 257, 449, 641
OFFSET
1,1
COMMENTS
See Castro-Medina (2016) for precise definition.
It is only a conjecture that this sequence is infinite.
CROSSREFS
Cf. A057716.
Sequence in context: A341759 A144620 A217622 * A091864 A304079 A109722
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 08 2016
STATUS
approved