login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A269723 Start with A_0 = 0, then extend by setting B_k = complement of A_k and A_{k+1} = A_k A_k B_k B_k; sequence is limit of A_k as k -> infinity. 3
0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0

COMMENTS

Equivalently, trajectory of 0 under the morphism 0 -> 0011, 1 -> 1100.

a(n) is the number of 1's, mod 2, in the 2^{odd} positions of the binary representation of n. - Jon Hart, Aug 09 2016

LINKS

Chai Wah Wu, Table of n, a(n) for n = 0..16383

Index entries for sequences that are fixed points of mappings

EXAMPLE

The first few A_k are:

A_0 = 0,

A_1 = 0,0,1,1,

A_2 = 0,0,1,1,0,0,1,1,1,1,0,0,1,1,0,0,

A_3 = 0,0,1,1,0,0,1,1,1,1,0,0,1,1,0,0,0,0,1,1,0,0,1,1,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0,0,1,1,0,0,1,1,1,1,0,0,1,1,0,0,0,0,1,1,0,0,1,1,

...

MATHEMATICA

Table[Mod[#, 2] &@ Count[Drop[#, {1, Length@ #, 2}], 1] &@ Reverse@ IntegerDigits[n, 2], {n, 120}] (* Michael De Vlieger, Aug 11 2016 *)

PROG

(Python)

A269723_list = [0]

for _ in range(7):

    A269723_list += A269723_list + [1-d for d in A269723_list]*2 # Chai Wah Wu, Mar 04 2016

(Python)

A269723_list = [bin(_&0xaaaaa).count('1')%2 for _ in range(16384)] # Jon Hart, Aug 09 2016

CROSSREFS

The Thue-Morse A010060 and A189718 have similar definitions.

Sequence in context: A285501 A288551 A327174 * A284487 A156660 A155899

Adjacent sequences:  A269720 A269721 A269722 * A269724 A269725 A269726

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Mar 04 2016. Thanks to Chai Wah Wu for correcting an error in my initial submission.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 15 14:06 EST 2019. Contains 329149 sequences. (Running on oeis4.)