login
A269712
Number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 20", based on the 5-celled von Neumann neighborhood.
0
1, 4, 12, 28, 60, 124, 252, 508, 1020, 2044, 4092, 8188, 16380, 32764, 65532, 131068
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
Rules 28, 52, 60, 148, 156, 180, 188, 532, 540, 564, 572, 660, 668, 692 and 700 also generate this sequence.
Apparently a duplicate of A173033. - R. J. Mathar, Mar 09 2016
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, Mar 08 2016: (Start)
a(n) = 4*(2^n-1) =A028399(n+2) for n>0.
a(n) = 3*a(n-1)-2*a(n-2) for n>2.
G.f.: (1+x+2*x^2) / ((1-x)*(1-2*x)).
(End)
MATHEMATICA
rule=20; stages=300;
ca=CellularAutomaton[{rule, {2, {{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}}, {1, 1}}, {{{1}}, 0}, stages]; (* Start with single black cell *)
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Part[on, 2^Range[0, Log[2, stages]]] (* Extract relevant terms *)
CROSSREFS
Cf. A269711.
Sequence in context: A261320 A179023 A321690 * A028399 A173033 A339124
KEYWORD
nonn,more
AUTHOR
Robert Price, Mar 04 2016
EXTENSIONS
a(9)-a(15) from Lars Blomberg, Apr 15 2016
STATUS
approved