%I
%S 1,6,14,34,54,86,126,202,270,350,438,562,686,846,1030,1322,1582,1854,
%T 2134,2450,2766,3118,3494,3978,4438,4934,5454,6082,6710,7446,8254,
%U 9386,10414,11454,12502,13586,14670,15790,16934,18186,19414,20678,21966,23362
%N Partial sums of the number of active (ON,black) cells in nth stage of growth of twodimensional cellular automaton defined by "Rule 14", based on the 5celled von Neumann neighborhood.
%C Initialized with a single black (ON) cell at stage zero.
%C Rules 46, 142 and 174 also generate this sequence.
%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H Robert Price, <a href="/A269709/b269709.txt">Table of n, a(n) for n = 0..300</a>
%H N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H <a href="https://oeis.org/wiki/Index_to_2D_5Neighbor_Cellular_Automata">Index to 2D 5Neighbor Cellular Automata</a>
%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%t rule=14; stages=300;
%t ca=CellularAutomaton[{rule,{2,{{0,2,0},{2,1,2},{0,2,0}}},{1,1}},{{{1}},0},stages]; (* Start with single black cell *)
%t on=Map[Function[Apply[Plus,Flatten[#1]]],ca] (* Count ON cells at each stage *)
%t Table[Total[Part[on,Range[1,i]]],{i,1,Length[on]}] (* Sum at each stage *)
%Y Cf. A269707.
%K nonn,easy
%O 0,2
%A _Robert Price_, Mar 04 2016
