login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A269708 Number of active (ON,black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 14", based on the 5-celled von Neumann neighborhood. 0
1, 5, 20, 76, 292, 1132, 4420, 17356, 68452, 270892, 1074820, 4273036, 17013412, 67817452, 270561220, 1080119116 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Initialized with a single black (ON) cell at stage zero.

Rules 46, 142 and 174 also generate this sequence.

REFERENCES

S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

LINKS

Table of n, a(n) for n=0..15.

N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.

Eric Weisstein's World of Mathematics, Elementary Cellular Automaton

S. Wolfram, A New Kind of Science

Index entries for sequences related to cellular automata

Index to 2D 5-Neighbor Cellular Automata

Index to Elementary Cellular Automata

FORMULA

Conjectures from Colin Barker, Mar 08 2016: (Start)

a(n) = 4*3^(n-2)+4^n for n>1.

a(n) = 7*a(n-1)-12*a(n-2) for n>3.

G.f.: (1-2*x-3*x^2-4*x^3) / ((1-3*x)*(1-4*x)).

(End)

MATHEMATICA

rule=14; stages=300;

ca=CellularAutomaton[{rule, {2, {{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}}, {1, 1}}, {{{1}}, 0}, stages]; (* Start with single black cell *)

on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)

Part[on, 2^Range[0, Log[2, stages]]] (* Extract relevant terms *)

CROSSREFS

Cf. A269707.

Sequence in context: A005283 A057552 A300918 * A295347 A270985 A289786

Adjacent sequences:  A269705 A269706 A269707 * A269709 A269710 A269711

KEYWORD

nonn,more

AUTHOR

Robert Price, Mar 04 2016

EXTENSIONS

a(9)-a(15) from Lars Blomberg, Apr 12 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 19 22:34 EST 2019. Contains 329323 sequences. (Running on oeis4.)