This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A269701 Cyclic Fibonacci sequence, restricted to maximum=6 1
 0, 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 6, 5, 5, 4, 3, 1, 4, 5, 3, 2, 5, 1, 6, 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 6, 5, 5, 4, 3, 1, 4, 5, 3, 2, 5, 1, 6, 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 6, 5, 5, 4, 3, 1, 4, 5, 3, 2, 5, 1, 6, 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 6, 5, 5, 4, 3, 1, 4, 5, 3, 2, 5, 1, 6, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Sequence has a period of 24. LINKS Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1). FORMULA F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1 and F(n) = F(n-1) + F(n-2) - 6 if F(n-1) + F(n-2) > 6. G.f.: ( -x *(1 +x +2*x^2 +3*x^3 +5*x^4 +2*x^5 +x^6 +3*x^7 +4*x^8 +x^9 +5*x^10 +6*x^11 +5*x^12 +5*x^13 +4*x^14 +3*x^15 +x^16 +4*x^17 +5*x^18 +3*x^19 +2*x^20 +5*x^21 +x^22 +6*x^23) ) / ( (x-1) *(1+x+x^2) *(1+x) *(1-x+x^2) *(1+x^2) *(x^4-x^2+1) *(1+x^4) *(x^8-x^4+1) ). - R. J. Mathar, Apr 16 2016 EXAMPLE For n = 6; F(5) + F(4) equals 8 then F(6) = 8 - 6 = 2. MAPLE A269701 := proc(n)     option remember;     if n <=5 then         combinat[fibonacci](n) ;     else         a := procname(n-1)+procname(n-2) ;         if a > 6 then             a-6;         else             a;         end if;     end if; end proc: # R. J. Mathar, Apr 16 2016 MATHEMATICA Table[Mod[Fibonacci[n], 6], {n, 100}] /. 0 -> 6 (* Alonso del Arte, Mar 28 2016 *) PadRight[{0}, 120, {6, 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 6, 5, 5, 4, 3, 1, 4, 5, 3, 2, 5, 1}] (* Harvey P. Dale, May 13 2019 *) PROG (Erlang) fibocy(1) -> 1; fibocy(2) -> 1; fibocy(N) when N > 1 ->    Tmp = fibocy(N-1) + fibocy(N-2),    if Tmp > 6 -> Tmp - 6;       true -> Tmp    end. CROSSREFS Cf. A000045 (Fibonacci numbers), A082117. Sequence in context: A094122 A280185 A082117 * A011157 A205387 A060441 Adjacent sequences:  A269698 A269699 A269700 * A269702 A269703 A269704 KEYWORD nonn,easy,less AUTHOR Gabriel Osorio, Mar 04 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 16:24 EST 2019. Contains 329808 sequences. (Running on oeis4.)