login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A269701 Cyclic Fibonacci sequence, restricted to maximum=6 1
0, 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 6, 5, 5, 4, 3, 1, 4, 5, 3, 2, 5, 1, 6, 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 6, 5, 5, 4, 3, 1, 4, 5, 3, 2, 5, 1, 6, 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 6, 5, 5, 4, 3, 1, 4, 5, 3, 2, 5, 1, 6, 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 6, 5, 5, 4, 3, 1, 4, 5, 3, 2, 5, 1, 6, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Sequence has a period of 24.

LINKS

Table of n, a(n) for n=0..97.

Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).

FORMULA

F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1 and F(n) = F(n-1) + F(n-2) - 6 if F(n-1) + F(n-2) > 6.

G.f.: ( -x *(1 +x +2*x^2 +3*x^3 +5*x^4 +2*x^5 +x^6 +3*x^7 +4*x^8 +x^9 +5*x^10 +6*x^11 +5*x^12 +5*x^13 +4*x^14 +3*x^15 +x^16 +4*x^17 +5*x^18 +3*x^19 +2*x^20 +5*x^21 +x^22 +6*x^23) ) / ( (x-1) *(1+x+x^2) *(1+x) *(1-x+x^2) *(1+x^2) *(x^4-x^2+1) *(1+x^4) *(x^8-x^4+1) ). - R. J. Mathar, Apr 16 2016

EXAMPLE

For n = 6; F(5) + F(4) equals 8 then F(6) = 8 - 6 = 2.

MAPLE

A269701 := proc(n)

    option remember;

    if n <=5 then

        combinat[fibonacci](n) ;

    else

        a := procname(n-1)+procname(n-2) ;

        if a > 6 then

            a-6;

        else

            a;

        end if;

    end if;

end proc: # R. J. Mathar, Apr 16 2016

MATHEMATICA

Table[Mod[Fibonacci[n], 6], {n, 100}] /. 0 -> 6 (* Alonso del Arte, Mar 28 2016 *)

PadRight[{0}, 120, {6, 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 6, 5, 5, 4, 3, 1, 4, 5, 3, 2, 5, 1}] (* Harvey P. Dale, May 13 2019 *)

PROG

(Erlang)

fibocy(1) -> 1;

fibocy(2) -> 1;

fibocy(N) when N > 1 ->

   Tmp = fibocy(N-1) + fibocy(N-2),

   if Tmp > 6 -> Tmp - 6;

      true -> Tmp

   end.

CROSSREFS

Cf. A000045 (Fibonacci numbers), A082117.

Sequence in context: A094122 A280185 A082117 * A011157 A205387 A060441

Adjacent sequences:  A269698 A269699 A269700 * A269702 A269703 A269704

KEYWORD

nonn,easy,less

AUTHOR

Gabriel Osorio, Mar 04 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 16:24 EST 2019. Contains 329808 sequences. (Running on oeis4.)