Maple-assisted Proof of Empirical Formula for A269650

Robert Israel

18 Apr 2023

The arrays to be counted may be considered as directed walks on a directed pseudograph (i.e. a directed graph where loops are allowed). Since we only allow each of the pairs $(0,1)$ and $(1,2)$ to occur at most once, each of 0,1 and 2 will correspond to four nodes of this pseudograph, one for each answer to the pair of questions, has $(0,1)$ occurred? has $(1,2)$ occurred? The following code constructs the transition matrix, where the first four coordinates correspond to 0 , the second four to 1 and the third four to 2 .

```
[> T:= Matrix \((12,12)\) :
    for i from 1 to 12 do \(T[i, i]:=1\) od: \# loops
    T[1,6]:= 1: T[3,8]:= 1: \# transitions 0 -> 1
    T[5,11]:= 1: T[6,12]:= 1: \# transitions 1 -> 2
    for \(i\) from 1 to 4 do \(T[i, i+8]:=1 ; T[i+4, i]:=1 ; T[i+8, i]:=1 ; T\)
    [i+8,i+4]:= 1 od:
    \# transitions 0 -> 2, 1 -> 0, 2 -> 0 and 2 -> 1
\(\left[\begin{array}{llllllllllll}1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1\end{array}\right]\)
```

Then $a(n)=u^{T} T^{n-1} v$ where $u^{T}=[1,0,0,0,1,0,0,0,1,0,0,0]$ (corresponding to the fact that we start with neither $0-1$ nor 1-2 having occurred), and $v^{T}=$ [1.1.1.1.1.1.1.1.1.1.1.1]. To check, here are the first few terms in the sequence.
$\rangle \mathrm{u}:=\langle 1,0,0,0,1,0,0,0,1,0,0,0\rangle: \mathrm{v}:=\langle 1 \$ 12\rangle$:
seq(u^ㅇT. $\mathrm{T}^{\wedge} \mathrm{i} . \mathrm{v}, \mathrm{i}=0$.. 20);
$3,9,27,79,225,626,1710,4605,12259,32320,84504,219356,565816,1451349,3704271$,

This must satisfy a linear recurrence, corresponding to a polynomial dividing the minimal polynomial of the matrix T. In this case, it actually is the minimal polynomial.

$$
\left[\begin{array}{l}
>\mathrm{P}:=\text { LinearAlgebra:-MinimalPolynomial }(\mathbf{T}, \mathbf{x}) ; \\
\quad P:=x^{9}-9 x^{8}+33 x^{7}-66 x^{6}+84 x^{5}-75 x^{4}+47 x^{3}-21 x^{2}+6 x-1 \tag{3}
\end{array}\right.
$$

Thus the recurrence is

$$
\left[\begin{array}{l}
>\operatorname{add}(\operatorname{coeff}(\mathrm{P}, \mathbf{x}, \mathrm{i}) * \mathrm{a}(\mathrm{n}+\mathrm{i}-9), \mathbf{i}=0 \ldots 9)=0 ; \\
-a(n-9)+6 a(n-8)-21 a(n-7)+47 a(n-6)-75 a(n-5)+84 a(n-4) \tag{4}\\
\quad-66 a(n-3)+33 a(n-2)-9 a(n-1)+a(n)=0
\end{array}\right.
$$

