%I #13 Oct 13 2017 00:21:22
%S 1,2,1,4,3,5,6,2,6,7,8,10,1,3,4,9,10,12,1,2,4,8,9,13,15,16,2,3,8,10,
%T 12,13,14,15,18,5,7,10,11,14,15,17,19,20,21,22,1,4,5,6,7,9,13,16,20,
%U 22,23,24,25,28
%N Irregular triangle in which n-th row the gives quadratic residues prime(n)- m modulo prime(n), for m from {1, 2, ..., prime(n)-1}, in increasing order.
%C The length of row 1 is 1 and of row n, n >= 2, is (prime(n)-1)/2, where prime(n) = A000040(n).
%F For n = 1, prime(1) = 2: 1, and for odd primes n >= 2: the increasing values of m from {1, 2, ..., p-1} with the Legendre symbol (-m/prime(n)) = + 1.
%F T(n, k) = prime(n) - A063987(n,(prime(n)-1)/2-k+1). k=1..(prime(n)-1)/2, for n >= 2, and T(1, 1) = 1.
%e The irregular triangle T(n, k) begins (P(n) is here prime(n)):
%e n, P(n)\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14
%e 1, 2: 1
%e 2, 3: 2
%e 3, 5: 1 4
%e 4, 7: 1 2 4
%e 5, 11: 1 3 4 5 9
%e 6: 13: 1 3 4 9 10 12
%e 7, 17: 1 2 4 8 9 13 15 16
%e 8, 19: 1 4 5 6 7 9 11 16 17
%e 9, 23: 1 2 3 4 6 8 9 12 13 16 18
%e 10, 29: 1 4 5 6 7 9 13 16 20 22 23 24 25 28
%e ...
%t t = Table[Select[Range[Prime@ n - 1], JacobiSymbol[#, Prime@ n] == 1 &], {n, 10}]; Table[Prime@ n - t[[n, (Prime@ n - 1)/2 - k + 1]], {n, Length@ t}, {k, (Prime@ n - 1)/2}] /. {} -> 1 // Flatten (* _Michael De Vlieger_, Mar 31 2016, after _Jean-François Alcover_ at A063987 *)
%Y Cf. A000040, A063987.
%K nonn,tabf,easy
%O 1,2
%A _Wolfdieter Lang_, Mar 06 2016