login
A269562
Array read by antidiagonals: T(n,m) is the number of Hamiltonian cycles in the rook graph K_n X K_m.
9
0, 0, 0, 1, 1, 1, 3, 3, 3, 3, 12, 30, 48, 30, 12, 60, 480, 1566, 1566, 480, 60, 360, 12000, 126120, 284112, 126120, 12000, 360, 2520, 430920, 18153720, 122330880, 122330880, 18153720, 430920, 2520, 20160, 21052080, 4357332000, 112777827840, 335750676480, 112777827840, 4357332000, 21052080, 20160
OFFSET
1,7
COMMENTS
Equivalently, the number of rook tours on an n X m lattice.
2*T(n,m) is divisible by (n-1)!*(m-1)!. - Andrew Howroyd, Feb 08 2021
LINKS
Eric Weisstein's World of Mathematics, Hamiltonian Cycle
Eric Weisstein's World of Mathematics, Rook Graph
FORMULA
From Andrew Howroyd, Feb 08 2021: (Start)
T(n,m) = T(m,n).
T(n,1) = (n-1)!/2 for n >= 3. (End)
EXAMPLE
Array begins:
=============================================================
n\m | 1 2 3 4 5
----+--------------------------------------------------------
1 | 0 0 1 3 12 ...
2 | 0 1 3 30 480 ...
3 | 1 3 48 1566 126120 ...
4 | 3 30 1566 284112 122330880 ...
5 | 12 480 126120 122330880 335750676480 ...
6 | 60 12000 18153720 112777827840 2190773906150400 ...
7 | 360 430920 4357332000 ...
...
CROSSREFS
Column 1 is A001710(n-1) for n >= 3.
Columns 2..4 are A276356, A341498, A341499.
Main diagonal is A269561.
Sequence in context: A349924 A170858 A024725 * A214730 A153491 A287505
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Feb 29 2016
STATUS
approved