The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A269556 Expansion of (-7*x^2 + 148*x - 5)/(x^3 - 99*x^2 + 99*x - 1). 8
 5, 347, 33865, 3318287, 325158125, 31862177827, 3122168268785, 305940628162967, 29979059391701845, 2937641879758617707, 287858925156952833305, 28207237023501619046047, 2764021369378001713679165, 270845886962020666321511987, 26540132900908647297794495425, 2600662178402085414517539039527 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS McLaughlin (2010) gives an identity relating ten sequences, denoted a_k, b_k, ..., f_k, p_k, q_k, r_k, s_k. This is the sequence s_k. LINKS J. McLaughlin, An identity motivated by an amazing identity of Ramanujan, Fib. Q., 48 (No. 1, 2010), 34-38. Index entries for linear recurrences with constant coefficients, signature (99,-99,1). FORMULA G.f.: (-7*x^2 + 148*x - 5)/(x^3 - 99*x^2 + 99*x - 1). a(n) = 17/12 + (-(17*sqrt(6) - 43)/(2*sqrt(6) + 5)^(2*n) + (17*sqrt(6) + 43)*(2 sqrt(6) + 5)^(2*n))/24. - Bruno Berselli, Mar 02 2016 MATHEMATICA CoefficientList[Series[(-7 x^2 + 148 x - 5)/(x^3 - 99 x^2 + 99 x - 1), {x, 0, 20}], x] (* or *) Table[Simplify[17/12 + (-(17 Sqrt[6] - 43)/(2 Sqrt[6] + 5)^(2 n) + (17 Sqrt[6] + 43) (2 Sqrt[6] + 5)^(2 n))/24], {n, 0, 20}] (* Bruno Berselli, Mar 02 2016 *) PROG (PARI) Vec((-7*x^2 + 148*x - 5)/(x^3 - 99*x^2 + 99*x - 1) + O(x^20)) (Sage) gf = (-7*x^2+148*x-5)/(x^3-99*x^2+99*x-1) print(taylor(gf, x, 0, 20).list()) # Bruno Berselli, Mar 02 2016 (MAGMA) m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((-7*x^2+148*x-5)/(x^3-99*x^2+99*x-1))); // Bruno Berselli, Mar 02 2016 CROSSREFS Cf. A261004, A269548, A269549, A269550, A269551, A269552, A269553, A269554, A269555. Sequence in context: A124477 A059839 A300388 * A227448 A210820 A193806 Adjacent sequences:  A269553 A269554 A269555 * A269557 A269558 A269559 KEYWORD nonn,easy AUTHOR Michel Marcus, Feb 29 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 30 19:57 EDT 2020. Contains 337440 sequences. (Running on oeis4.)