login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A269556 Expansion of (-7*x^2 + 148*x - 5)/(x^3 - 99*x^2 + 99*x - 1). 8
5, 347, 33865, 3318287, 325158125, 31862177827, 3122168268785, 305940628162967, 29979059391701845, 2937641879758617707, 287858925156952833305, 28207237023501619046047, 2764021369378001713679165, 270845886962020666321511987, 26540132900908647297794495425, 2600662178402085414517539039527 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

McLaughlin (2010) gives an identity relating ten sequences, denoted a_k, b_k, ..., f_k, p_k, q_k, r_k, s_k. This is the sequence s_k.

LINKS

Table of n, a(n) for n=0..15.

J. McLaughlin, An identity motivated by an amazing identity of Ramanujan, Fib. Q., 48 (No. 1, 2010), 34-38.

Index entries for linear recurrences with constant coefficients, signature (99,-99,1).

FORMULA

G.f.: (-7*x^2 + 148*x - 5)/(x^3 - 99*x^2 + 99*x - 1).

a(n) = 17/12 + (-(17*sqrt(6) - 43)/(2*sqrt(6) + 5)^(2*n) + (17*sqrt(6) + 43)*(2 sqrt(6) + 5)^(2*n))/24. - Bruno Berselli, Mar 02 2016

MATHEMATICA

CoefficientList[Series[(-7 x^2 + 148 x - 5)/(x^3 - 99 x^2 + 99 x - 1), {x, 0, 20}], x] (* or *) Table[Simplify[17/12 + (-(17 Sqrt[6] - 43)/(2 Sqrt[6] + 5)^(2 n) + (17 Sqrt[6] + 43) (2 Sqrt[6] + 5)^(2 n))/24], {n, 0, 20}] (* Bruno Berselli, Mar 02 2016 *)

PROG

(PARI) Vec((-7*x^2 + 148*x - 5)/(x^3 - 99*x^2 + 99*x - 1) + O(x^20))

(Sage)

gf = (-7*x^2+148*x-5)/(x^3-99*x^2+99*x-1)

print taylor(gf, x, 0, 20).list() # Bruno Berselli, Mar 02 2016

(MAGMA) m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((-7*x^2+148*x-5)/(x^3-99*x^2+99*x-1))); // Bruno Berselli, Mar 02 2016

CROSSREFS

Cf. A261004, A269548, A269549, A269550, A269551, A269552, A269553, A269554, A269555.

Sequence in context: A124477 A059839 A300388 * A227448 A210820 A193806

Adjacent sequences:  A269553 A269554 A269555 * A269557 A269558 A269559

KEYWORD

nonn,easy

AUTHOR

Michel Marcus, Feb 29 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 20 07:27 EDT 2019. Contains 321345 sequences. (Running on oeis4.)