login
A269552
Expansion of (-3*x^2 + 94*x - 3)/(x^3 - 99*x^2 + 99*x - 1).
8
3, 203, 19803, 1940403, 190139603, 18631740603, 1825720439403, 178901971320803, 17530567468999203, 1717816709990601003, 168328507011609899003, 16494475870427779501203, 1616290306794910781218803, 158379955590030828779941403, 15519619357516226309653038603, 1520764317081000147517217841603
OFFSET
0,1
COMMENTS
Mc Laughlin (2010) gives an identity relating ten sequences, denoted a_k, b_k, ..., f_k, p_k, q_k, r_k, s_k. This is the sequence f_k.
FORMULA
G.f.: (-3*x^2 + 94*x - 3)/(x^3 - 99*x^2 + 99*x - 1).
a(n) = 99*a(n-1)-99*a(n-2)+a(n-3). - Wesley Ivan Hurt, May 20 2021
MATHEMATICA
CoefficientList[Series[(-3x^2+94x-3)/(x^3-99x^2+99x-1), {x, 0, 20}], x] (* or *) LinearRecurrence[{99, -99, 1}, {3, 203, 19803}, 20] (* Harvey P. Dale, Jan 14 2019 *)
PROG
(PARI) Vec((-3*x^2 + 94*x - 3)/(x^3 - 99*x^2 + 99*x - 1) + O(x^20))
KEYWORD
nonn,easy
AUTHOR
Michel Marcus, Feb 29 2016
STATUS
approved