login
A269548
Expansion of (-7*x^2 + 134*x + 1)/(x^3 - 99*x^2 + 99*x - 1).
8
-1, -233, -22961, -2250073, -220484321, -21605213513, -2117090440081, -207453257914553, -20328302185186241, -1991966160890337193, -195192355465067858801, -19126858869415759825433, -1874236976847279395033761, -183656096872163964953483273, -17996423256495221286046327121
OFFSET
0,2
COMMENTS
Mc Laughlin (2010) gives an identity relating ten sequences, denoted a_k, b_k, ..., f_k, p_k, q_k, r_k, s_k. This is the sequence b_k.
FORMULA
G.f.: (-7*x^2 + 134*x + 1)/(x^3 - 99*x^2 + 99*x - 1).
a(n) = 4/3 + ((3*sqrt(6) - 7)/(2*sqrt(6) + 5)^(2*n) - (3*sqrt(6) + 7)*(2*sqrt(6) + 5)^(2*n))/6. - Bruno Berselli, Mar 01 2016
MATHEMATICA
CoefficientList[Series[(-7 x^2 + 134 x + 1)/(x^3 - 99 x^2 + 99 x - 1), {x, 0, 20}], x] (* or *) Table[FullSimplify[4/3 + ((3 Sqrt[6] - 7)/(2 Sqrt[6] + 5)^(2 n) - (3 Sqrt[6] + 7) (2 Sqrt[6] + 5)^(2 n))/6], {n, 0, 20}] (* Bruno Berselli, Mar 01 2016 *)
PROG
(PARI) Vec((-7*x^2 + 134*x + 1)/(x^3 - 99*x^2 + 99*x - 1) + O(x^20))
(Sage)
gf = (-7*x^2+134*x+1)/(x^3-99*x^2+99*x-1)
print(taylor(gf, x, 0, 20).list()) # Bruno Berselli, Mar 01 2016
(Magma) m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((-7*x^2+134*x+1)/(x^3-99*x^2+99*x-1))); // Bruno Berselli, Mar 01 2016
KEYWORD
sign,easy
AUTHOR
Michel Marcus, Feb 29 2016
STATUS
approved