OFFSET
1,1
COMMENTS
Table starts
..2.....3......4.......5........6.........7.........8..........9.........10
..4.....9.....16......25.......36........49........64.........81........100
..6....24.....60.....120......210.......336.......504........720........990
.10....64....222.....568.....1210......2280......3934.......6352.......9738
.14...164....804....2648.....6890.....15324.....30464......55664......95238
.22...418...2878...12214....38878....102202....234358.....485038.....926854
.30..1048..10192...55836...217714....677200...1792788....4205812....8981446
.46..2614..35812..253418..1211476...4462414..13648124...36313762...86704348
.62..6468.125012.1143256..6705102..29265308.103462888..312366672..834223586
.94.15942.434110.5131592.36939610.191134204.781425950.2678039200.8002547722
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..9999
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +2*a(n-2) -2*a(n-3)
k=2: a(n) = 4*a(n-1) -a(n-2) -10*a(n-3) +6*a(n-4) +4*a(n-5)
k=3: a(n) = 7*a(n-1) -9*a(n-2) -23*a(n-3) +31*a(n-4) +33*a(n-5)
k=4: a(n) = 14*a(n-1) -65*a(n-2) +80*a(n-3) +163*a(n-4) -280*a(n-5) -208*a(n-6)
k=5: [order 7]
k=6: [order 9]
k=7: [order 9]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 2*n
n=4: a(n) = n^4 + 4*n^3 + 3*n^2 + 2*n
n=5: a(n) = n^5 + 5*n^4 + 4*n^3 + 6*n^2 - 2*n
n=6: a(n) = n^6 + 6*n^5 + 5*n^4 + 12*n^3 - 6*n^2 + 6*n - 2
n=7: a(n) = n^7 + 7*n^6 + 6*n^5 + 20*n^4 - 12*n^3 + 22*n^2 - 18*n + 4
EXAMPLE
Some solutions for n=6 k=4
..2. .4. .4. .0. .3. .0. .0. .3. .1. .2. .2. .3. .2. .1. .4. .0
..4. .3. .1. .3. .2. .2. .3. .0. .2. .0. .1. .0. .1. .3. .0. .2
..3. .2. .0. .1. .1. .4. .1. .0. .3. .3. .3. .1. .3. .0. .4. .2
..2. .1. .1. .2. .1. .0. .3. .2. .3. .4. .1. .0. .4. .2. .1. .4
..0. .3. .1. .2. .0. .1. .1. .4. .2. .1. .1. .1. .1. .4. .1. .0
..2. .1. .2. .4. .2. .1. .2. .0. .0. .2. .2. .2. .3. .2. .4. .4
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 29 2016
STATUS
approved