

A269520


Primes 8k + 7 preceding the maximal gaps in A269519.


3



7, 47, 271, 311, 503, 6367, 37223, 42487, 66463, 183527, 259271, 307919, 471007, 1070567, 1801223, 5903687, 6885743, 16936247, 22413319, 38820263, 63977327, 84164447, 147452759, 150334567, 239422639, 300412031, 387154951, 473153959, 539526191, 760400783, 788128039
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Subsequence of A007522.
A269519 lists the corresponding record gap sizes. See more comments there.


LINKS

Alexei Kourbatov, Table of n, a(n) for n = 1..39
Alexei Kourbatov and Marek Wolf, Predicting maximal gaps in sets of primes, arXiv preprint arXiv:1901.03785 [math.NT], 2019.


EXAMPLE

The first two primes of the form 8k + 7 are 7 and 23, so a(1)=7. The next primes of this form are 31, 47; the gaps 3123 and 4731 are not records so nothing is added to the sequence. The next prime of this form is 71 and the gap 7147=24 is a new record, so a(2)=47.


PROG

(PARI) re=0; s=7; forprime(p=23, 1e8, if(p%8!=7, next); g=ps; if(g>re, re=g; print1(s", ")); s=p)


CROSSREFS

Cf. A007522, A269519, A269521.
Sequence in context: A093112 A091516 A064385 * A009260 A201871 A198845
Adjacent sequences: A269517 A269518 A269519 * A269521 A269522 A269523


KEYWORD

nonn


AUTHOR

Alexei Kourbatov, Feb 28 2016


STATUS

approved



