login
A269515
Primes 8k + 5 at the end of the maximal gaps in A269513.
3
13, 29, 101, 509, 613, 941, 1373, 3037, 4349, 4733, 5981, 7477, 20693, 20981, 31957, 61141, 62477, 201389, 239893, 308093, 1159189, 1475701, 3060053, 5155789, 5388709, 5452709, 19314221, 69685813, 85432133, 91540133, 291295813, 381465589, 512258413, 609942197, 1126256773
OFFSET
1,1
COMMENTS
Subsequence of A007521.
A269513 lists the corresponding record gap sizes. See more comments there.
LINKS
Alexei Kourbatov and Marek Wolf, Predicting maximal gaps in sets of primes, arXiv preprint arXiv:1901.03785 [math.NT], 2019.
EXAMPLE
The first two primes of the form 8k + 5 are 5 and 13, so a(1)=13. The next prime of this form is 29 and the gap 29-13=16 is a new record, so a(2)=29.
PROG
(PARI) re=0; s=5; forprime(p=13, 1e8, if(p%8!=5, next); g=p-s; if(g>re, re=g; print1(p", ")); s=p)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alexei Kourbatov, Feb 28 2016
STATUS
approved