The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A269454 Safe primes that are not congruent to -1 mod 8. 3
 5, 11, 59, 83, 107, 179, 227, 347, 467, 563, 587, 1019, 1187, 1283, 1307, 1523, 1619, 1907, 2027, 2099, 2459, 2579, 2819, 2963, 3203, 3467, 3779, 3803, 3947, 4139, 4259, 4283, 4547, 4787, 5099, 5387, 5483, 5507, 5939, 6659, 6779, 6827, 6899, 7187, 7523 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS For safe primes see A005385. Conjecture: If p and q are two distinct safe primes not congruent to -1 mod 8 then the order of 2 mod p*q is phi(p*q)/2. For phi see A000010. Note: The order of 2 mod p*q is the smallest positive integer k such that 2^k = 1 mod p*q. See Rosen's definition of the order of an integer on p.334. Also, k is smaller than or equal to phi(p*q)/2 for all products of distinct odd primes p and q. See Cohen's Prop. 1.4.2 on p. 25. 2^(phi(p*q)/2) == 1 (mod p*q) for all distinct odd primes p and q. See Nagell's corollary to Theorem 64, p. 106, with a = 2 and n = p*q. - Wolfdieter Lang, Mar 31 2016 REFERENCES Henri Cohen, Graduate Texts In Mathematics: A Course in Computational Algebraic Number Theory, Springer, 2000, p. 25 Trygve Nagell, Introduction to Number Theory, Chelsea, 1964, p. 106. Kenneth H. Rosen, Elementary Number Theory And Its Applications, AT&T Laboratories, 2005, p. 334 LINKS FORMULA A005385 without its intersection with A007522. MATHEMATICA Select[Prime@ Range@ 1000, And[PrimeQ[(# - 1)/2], MemberQ[Range[0, 6], Mod[#, 8]]] &] (* Michael De Vlieger, Feb 28 2016 *) PROG (MAGMA) [ p: p in PrimesUpTo(8000) | IsPrime((p-1) div 2) and not p mod 8 eq 7]; // Vincenzo Librandi, Feb 28 2016 (PARI) lista(nn) = {forprime(p=3, nn, if (((p % 8) != 7) && isprime((p-1)/2), print1(p, ", ")); ); } \\ Michel Marcus, Mar 24 2016 CROSSREFS Cf. A005385, A007522. Sequence in context: A070198 A121934 A153812 * A153209 A239026 A106257 Adjacent sequences:  A269451 A269452 A269453 * A269455 A269456 A269457 KEYWORD nonn AUTHOR Marina Ibrishimova, Feb 27 2016 EXTENSIONS More terms from Vincenzo Librandi, Feb 28 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 07:21 EDT 2020. Contains 337166 sequences. (Running on oeis4.)