login
A269410
Number of length-4 0..n arrays with no repeated value greater than or equal to the previous repeated value.
1
9, 63, 222, 570, 1215, 2289, 3948, 6372, 9765, 14355, 20394, 28158, 37947, 50085, 64920, 82824, 104193, 129447, 159030, 193410, 233079, 278553, 330372, 389100, 455325, 529659, 612738, 705222, 807795, 921165, 1046064, 1183248, 1333497
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = n^4 + 4*n^3 + (7/2)*n^2 + (1/2)*n.
Conjectures from Colin Barker, Jan 21 2019: (Start)
G.f.: 3*x*(3 + 6*x - x^2) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
EXAMPLE
Some solutions for n=8:
..8. .3. .1. .0. .3. .0. .8. .2. .3. .1. .0. .4. .3. .5. .4. .6
..8. .8. .3. .5. .4. .2. .1. .4. .0. .5. .2. .4. .0. .6. .4. .8
..4. .7. .3. .8. .7. .2. .0. .5. .3. .3. .7. .0. .0. .1. .2. .0
..0. .8. .8. .7. .5. .8. .5. .8. .2. .8. .0. .0. .2. .1. .4. .2
CROSSREFS
Row 4 of A269409.
Sequence in context: A299579 A344526 A269641 * A178161 A015669 A202982
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 25 2016
STATUS
approved