login
Consider a number x > 1. Take the sum of its digits. Repeat the process deleting the first addendum and adding the previous sum. The sequence lists the numbers that after some iterations reach the Euler totient function of x.
6

%I #31 May 21 2019 23:55:19

%S 22,44,55,88,98,136,162,166,241,462,1020,2040,2416,2899,3060,4080,

%T 5110,7942,10738,10996,15006,24822,57040,67054,70625,75588,96888,

%U 261524,301834,507471,735840,816584,2893877,6081064,8155616,16513570,18772258,40833543

%N Consider a number x > 1. Take the sum of its digits. Repeat the process deleting the first addendum and adding the previous sum. The sequence lists the numbers that after some iterations reach the Euler totient function of x.

%H Lars Blomberg, <a href="/A269310/b269310.txt">Table of n, a(n) for n = 1..47</a>

%e phi(22) = 10: 2 + 2 = 4; 2 + 4 = 6; 4 + 6 = 10.

%p with(numtheory): P:=proc(q,h) local a,b,k,n,t,v; v:=array(1..h);

%p for n from 2 to q do a:=n; b:=ilog10(a)+1; if b>1 then

%p for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b);

%p while v[t]<phi(n) do t:=t+1; v[t]:=add(v[k], k=t-b..t-1); od;

%p if v[t]=phi(n) then print(n); fi; fi; od; end: P(10^6, 1000);

%t Select[Range[2,10^5], (t = EulerPhi[#]; d = IntegerDigits[#]; While[Total[d] < t, d = Join[Rest[d], {Total[d]}]]; Total[d] == t) &] (* _Robert Price_, May 17 2019 *)

%Y Cf. A000010, A007629, A269307, A269308, A269309, A269311, A269312.

%K nonn,base

%O 1,1

%A _Paolo P. Lava_, Feb 24 2016

%E a(38) from _Lars Blomberg_, Jan 18 2018