login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A269310 Consider a number x > 1. Take the sum of its digits. Repeat the process deleting the first addendum and adding the previous sum. The sequence lists the numbers that after some iterations reach the Euler totient function of x. 6
22, 44, 55, 88, 98, 136, 162, 166, 241, 462, 1020, 2040, 2416, 2899, 3060, 4080, 5110, 7942, 10738, 10996, 15006, 24822, 57040, 67054, 70625, 75588, 96888, 261524, 301834, 507471, 735840, 816584, 2893877, 6081064, 8155616, 16513570, 18772258, 40833543 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Lars Blomberg, Table of n, a(n) for n = 1..47

EXAMPLE

phi(22) = 10: 2 + 2 = 4; 2 + 4 = 6; 4 + 6 = 10.

MAPLE

with(numtheory): P:=proc(q, h) local a, b, k, n, t, v; v:=array(1..h);

for n from 2 to q do a:=n; b:=ilog10(a)+1; if b>1 then

for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b);

while v[t]<phi(n) do t:=t+1; v[t]:=add(v[k], k=t-b..t-1); od;

if v[t]=phi(n) then print(n); fi; fi; od; end: P(10^6, 1000);

MATHEMATICA

Select[Range[2, 10^5], (t = EulerPhi[#]; d = IntegerDigits[#]; While[Total[d] < t, d = Join[Rest[d], {Total[d]}]]; Total[d] == t) &] (* Robert Price, May 17 2019 *)

CROSSREFS

Cf. A000010, A007629, A269307, A269308, A269309, A269311, A269312.

Sequence in context: A123799 A138842 A040462 * A015799 A008604 A110724

Adjacent sequences:  A269307 A269308 A269309 * A269311 A269312 A269313

KEYWORD

nonn,base

AUTHOR

Paolo P. Lava, Feb 24 2016

EXTENSIONS

a(38) from Lars Blomberg, Jan 18 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 20 14:06 EDT 2019. Contains 326152 sequences. (Running on oeis4.)