login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A269301 Normalization coefficients for quantum Pascal's pyramid, numerators of: T(n,k,m) = ((n - m)! m!)/(2^n (n - k)! k!). 2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,19

COMMENTS

Read by block by row, i.e., a( x(n,k,m) ) have x(n,k,m) = ( sum_{i=0}^n i^2 ) + k ( n + 1 ) + m and (n,k,m) >= 0. See comments in A268533 for relevance.

LINKS

Table of n, a(n) for n=0..90.

FORMULA

T(n,k,m) = Numerator[((n - m)! m!)/(2^n (n - k)! k!)]

EXAMPLE

First nontrivial block:

1, 1, 1, 1

3, 1, 1, 3

3, 1, 1, 3

1, 1, 1, 1

MATHEMATICA

NormFrac[Block_] :=

Outer[Function[{n, k, m}, ((n - m)! m!)/(2^n (n - k)! k!)][

    Block, #1, #2] &, Range[0, Block], Range[0, Block], 1]; Flatten[

Numerator[NormFrac[#]] & /@ Range[0, 5]]

CROSSREFS

Denominators: A269302. Cf. A268533.

Sequence in context: A169941 A099545 A300867 * A132429 A046540 A123191

Adjacent sequences:  A269298 A269299 A269300 * A269302 A269303 A269304

KEYWORD

nonn,frac

AUTHOR

Bradley Klee, Feb 22 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 12:45 EST 2020. Contains 330958 sequences. (Running on oeis4.)