login
A269258
Primes p such that p+2^4, p+2^6, p+2^8 and p+2^10 are all primes.
6
7, 37, 163, 337, 2647, 5023, 9157, 9277, 15667, 22093, 24907, 40177, 43597, 47287, 53593, 56893, 59077, 59497, 66553, 78877, 83407, 84793, 92737, 93307, 102043, 111577, 114577, 116953, 120607, 135193, 137383, 141397, 142543, 150067, 165463, 173713, 180007, 181903, 183943
OFFSET
1,1
FORMULA
A269257 INTERSECT A361485. - R. J. Mathar, Mar 26 2024
EXAMPLE
The prime 7 is in the sequence because 7+16 = 23, 7+64 = 71, 7+256 = 263 and 7+1024 = 1031 are all primes.
The prime 37 is in the sequence because 37+16 = 53, 37+64 = 101, 37+256 = 293 and 37+1024 = 1061 are all primes.
MATHEMATICA
Select[Prime@ Range[10^5], Times @@ Boole@ PrimeQ[# + 2^{4, 6, 8, 10}] == 1 &] (* Michael De Vlieger, Jul 13 2016 *)
PROG
(Perl) use ntheory ":all"; say for sieve_prime_cluster(2, 1e5, 16, 64, 256, 1024); # Dana Jacobsen, Jul 13 2016
(Magma) [p: p in PrimesInInterval(2, 200000) | forall{i: i in [16, 64, 256, 1024] | IsPrime(p+i)}]; // Vincenzo Librandi, Jul 16 2016
CROSSREFS
Subsequence of A269257.
Sequence in context: A085720 A201962 A269257 * A247308 A175284 A049494
KEYWORD
nonn
AUTHOR
STATUS
approved